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Fuzzy Systems
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Abstract—In this paper, we propose an index that helps preserve
the semantic interpretability of linguistic fuzzy models while a tun-
ing of the membership functions (MFs) is performed. The proposed
index is the aggregation of three metrics that preserve the original
meanings of the MFs as much as possible while a tuning of their def-
inition parameters is performed. Additionally, rule-selection mech-
anisms can be used to reduce the model complexity, which involves
another important interpretability aspect. To this end, we propose
a postprocessing multiobjective evolutionary algorithm that per-
forms rule selection and tuning of fuzzy-rule-based systems with
three objectives: accuracy, semantic interpretability maximization,
and complexity minimization. We tested our approach on nine real-
world regression datasets. In order to analyze the interaction be-
tween the fuzzy-rule-selection approach and the tuning approach,
these are also individually proved in a multiobjective framework
and compared with their respective single-objective counterparts.
We compared the different approaches by applying nonparametric
statistical tests for pairwise and multiple comparisons, taking into
consideration three representative points from the obtained Pareto
fronts in the case of the multiobjective-based approaches. Results
confirm the effectiveness of our approach, and a wide range of so-
lutions is obtained, which are not only more interpretable but are
also more accurate.

Index Terms—Fuzzy-rule-based systems (FRBSs), multiobjec-
tive evolutionary algorithms (MOEAs), rule selection, semantic
interpretability index, tuning.

I. INTRODUCTION

A S DISCUSSED by Zadeh [1], computing with words
(CW) is a methodology in which the objects of computa-

tion are words and propositions that are drawn from a natural
language, e.g., small, large, far, etc. CW is inspired by the re-
markable human capability to perform a wide variety of physical
and mental tasks with no measurements or computations. CW-
based techniques are employed to translate propositions that are
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expressed in a natural language into the generalized constraint
language. The development of the methodology of CW is the
development of a methodology in which words play the role of
labels of perceptions. Linguistic variables and linguistic fuzzy
rules are important elements in the conceptual structure of com-
putational theory of perceptions (see [1, Fig. 4]). Further, as
Zadeh stated [1], a fuzzy rule can be considered to be a Carte-
sian granule, and a fuzzy graph or a rule base (RB) may be
viewed as a disjunction of Cartesian granules, and in essence, a
fuzzy graph serves as an approximation to a function or a rela-
tion. This way, linguistic fuzzy modeling allows the modeling
of systems to be dealt with by building a linguistic model that
is interpretable by human beings. This task is usually devel-
oped by means of linguistic fuzzy-rule-based systems (FRBSs),
which are also called Mamdani FRBSs [2], [3] and use fuzzy
rules composed of linguistic variables [4]–[6] that take values
in a term set with a real-world meaning, i.e., a variable whose
values are words drawn from a natural language that represents
the basis for the concept of linguistic if–then rules.

Many automatic techniques have been proposed to extract a
proper set of linguistic fuzzy rules from numerical data. Most of
them usually try to improve the performance that is associated
with the prediction error without paying special attention to sys-
tem’s interpretability and without losing the linguistic meanings
associated with the model. Finding the right interpretability–
accuracy tradeoff, despite the original nature of fuzzy logic, has
given rise to a growing interest in methods that take both aspects
into account [7]–[11]. Ideally, both criteria should be satisfied
to a high degree. However, since they are in conflict, this is not
generally possible.

One way of doing this is to improve system’s accuracy while
trying to maintain interpretability to an acceptable level [9],
[12]. By considering structural criteria, we can distinguish two
main kinds of approaches that also take into account the inter-
pretability of FRBSs.

1) Complexity-based interpretability: These approaches are
used to decrease the complexity of the model that is ob-
tained [12]–[21] (which are usually measured as the num-
ber of rules (NRs), variables, labels per rule, etc.).

2) Semantics-based interpretability: These approaches are
used to preserve the semantics associated with the mem-
bership functions (MFs) [22]–[32]. We can find ap-
proaches that ensure semantic integrity, which usually
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imposes constraints on the MFs by considering measures
such as distinguishability, coverage, fuzzy ordering, etc.

However, by paying attention to accuracy, one of the most
widely used approaches to enhance the performance of FRBSs
is the tuning of the MFs [27], [33]–[39]. It involves the im-
provement of a previous definition of the database (DB) once
the RB has been obtained. The tuning methods refine the pa-
rameters that identify the MFs associated with the labels that
comprise the DB [40]. Even though this approach is able to ob-
tain highly accurate models, the semantic interpretability could
be affected, depending on the variations that are performed in
the MFs’ shapes. The complexity of the models can also be a
problem when a tuning is needed since usually, an excessive
NRs is initially required to reach the highest degree of accuracy.
Therefore, when an MF tuning is performed, three different cri-
teria are required for a good accuracy–interpretability tradeoff:
accuracy, complexity, and semantic interpretability.

A good way of optimizing these criteria simultaneously is the
use of multiobjective evolutionary algorithms (MOEAs) [41],
[42]. In fact, since this problem is multiobjective, most of the ap-
proaches that also take into account interpretability (especially,
the complexity-based interpretability) use MOEAs to obtain a
set of solutions with different degrees of accuracy and inter-
pretability [13]–[15], [17]–[21], [23], [26].

In this paper, we propose an index to preserve the semantic
interpretability of the DB while a tuning of the MFs is per-
formed. The proposed index, i.e., GM3M, is defined as the ge-
ometric mean of three metrics, with the aim to minimize the
displacement of the central point of the MFs, thus conserving
the lateral amplitude rate of the MFs and maintaining the area
of the original MFs that are associated with the linguistic la-
bels. This measure can be used to quantify the interpretability
of the tuned DB and could, therefore, be used as an objective
within a multiobjective evolutionary process. To this end, we
apply a specific MOEA to obtain interpretable and also accu-
rate linguistic fuzzy models by concurrently performing a rule
selection [16], [17], [43] and a tuning of the MF parameters
with the following three objectives: minimization of the system
error, minimization of the NRs, and maximization of the pro-
posed Gm3m index. This postprocessing algorithm is based on
the well-known modified strength Pareto evolutionary algorithm
(SPEA2) [44]. It is called tuning and selection (TS) by SPEA2
for semantics-based index (TSSP2-SI). In order to improve its
ability to search, TSSP2-SI implements such concepts as incest
prevention and restarting [45] and incorporates the main ideas
of the algorithm proposed in [13] to guide the search toward the
desired Pareto zone. Thus, TSSP2-SI aims to generate a com-
plete set of Pareto-optimum solutions, with different tradeoffs
between accuracy and interpretability in the double sense, thus
decreasing the complexity and maintaining the semantic-based
interpretability. We have not considered the well-known non-
dominated sorting genetic algorithm version II (NSGA-II) [46]
since, in [13], approaches based on SPEA2 were shown to be
more effective when a tuning of the MFs is performed.

We tested our approach on nine real-world regression
datasets. In order to analyze the interaction between the fuzzy
rule selection and the tuning of MFs and how it can affect

the different objectives, these are also individually proved in a
multiobjective framework and compared with their respective
single-objective counterparts [35]. We compared the different
approaches by applying nonparametric statistical tests for pair-
wise and multiple comparisons [47]–[50] by considering three
representative points from the obtained Pareto fronts in the case
of the MOEAs. Results confirm the effectiveness of our ap-
proach, and a wide range of solutions is obtained, which are not
only more interpretable but also more accurate.

Section II briefly analyzes the state of the art on inter-
pretable linguistic FRBS modeling. Section III introduces the
rule-selection and the tuning techniques, which are used con-
currently in this paper. Section IV presents the proposed index
to control the semantic interpretability of the MFs. Section V
presents the TSSP2-SI algorithm and describes its main charac-
teristics, as well as the considered genetic operators. Section VI
shows the experimental study and the results obtained. Finally,
in Section VII, we point out some conclusions. An Appendix
has been included to describe the nonparametric tests that are
used in our study.

II. INTRODUCTION TO INTERPRETABILITY

ON LINGUISTIC MODELING

This section reviews some basic ideas and works on the lin-
guistic modeling interpretability. Along with the review in [10],
which widely represents most of the existing works in the spe-
cialized literature, a framework to categorize fuzzy model in-
terpretability into high-level interpretability and low-level inter-
pretability has been recently suggested in [11].

1) High-level interpretability is obtained on the fuzzy rule
level by conducting overall complexity reduction in terms
of some criteria, such as a moderate number of variables,
a moderate NRs, completeness, and consistency of rules
(complexity-based interpretability).

2) Low-level interpretability of fuzzy models is achieved on
fuzzy set level by optimizing MFs in terms of the semantic
criteria on MFs (semantics-based interpretability).

The complexity-reduction techniques that are used in tradi-
tional system modeling can serve as fuzzy rule optimization,
which corresponds to aiming at the parsimony of the fuzzy RB,
which is one of the main high-level interpretability criteria of
fuzzy systems. This clarification is helpful as there are plentiful
traditional system modeling methods on complexity reduction
that have great potentials to induce compact RB in fuzzy system
modeling. Earlier works [16], [17] used rule selection on an
initial set of classification rules and two different criteria: accu-
racy and NRs. Along with the work presented in [17], Ishibuchi
and coworkers [18]–[20] optimized such complexity criteria by
applying MOEAs. Rule length (which is, sometimes, used in
combination with the NRs) has been included to minimize the
length of the rules by either rule selection [14], [18], [19] or
rule learning [18], [20], [21]. A method has also been proposed
in [13] and deeply discussed in [15] to minimize the NRs along
with a tuning of the MFs.

Low-level interpretability is achieved by optimizing MFs on
the fuzzy set level. Specifically, low-level interpretability hails
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from the improvement on interpretability by introducing seman-
tic constraint criteria into fuzzy modeling, which focus on the
changes of MFs [11]. Classic approaches, such as [31] and [32],
defined some helpful semantic criteria such as distinguishability,
moderate number of MFs, natural zero positioning, normality,
and coverage. These properties were later included in an MOEA
to check their interaction when they evolve simultaneously [26].
Other works have focused on defining proper similarity metrics
as a way to measure the distinguishability and coverage of the
MFs [28], which are sometimes used to fix some minimum val-
ues of covering [24], [27], and some others are used to define
maximum values of similarity for merging fuzzy sets and rules
(particularly when MFs came from clustering techniques) [25],
[30]. A similarity measure is also optimized in [29] to promote
a good covering of the MFs, along with two complexity crite-
ria in a combined index. Another MOEA is adopted in [23] to
perform context adaptation. This algorithm considers the system
error and an interpretability index to preserve the fuzzy ordering
and a good distinguishability.

Additionally, some other works try to go a step ahead by
considering all these kinds of measures in a linguistic frame-
work in order to search for a more global definition of inter-
pretability [12], [22]. In this sense, a conceptual framework is
presented in [7] to characterize the interpretability of FRBSs. It
makes reference to [10] and [11], which are combined in several
interpretability levels (extending the low–high categorization).

Although most of the sematic-based approaches are mainly
focused on finding partitions with a good overlapping among
MFs (covering and distinguishability), in this paper, since inter-
pretability is dependent on the problem context and user percep-
tions, we try to keep partitions and meanings to their original
values, while performance improvements are still allowed. Fur-
ther, it has also been combined with one of the classic complexity
measures.

III. FUZZY RULE SELECTION AND TUNING

OF MEMBERSHIP FUNCTIONS

In this paper, we present an MOEA for postprocessing that
concurrently performs a fuzzy rule selection and a tuning of the
MFs. This section briefly introduces the fuzzy-rule-selection
technique and the tuning approach used to optimize the MF
parameters.

A. Fuzzy Rule Selection

Fuzzy-rule-set-reduction techniques try to minimize the NRs
of a given FRBS while maintaining (or even improving) the sys-
tem’s performance. To do this, erroneous and conflicting rules
that degrade the performance are eliminated, thus obtaining a
more cooperative fuzzy rule set and, as a result, potentially im-
proving system’s accuracy. Furthermore, in many cases, accu-
racy is not the only requirement of the model, but interpretabil-
ity also becomes an important aspect. Reduction of the model
complexity is a way to improve the system’s readability, i.e.,
a compact system with few rules generally requires less ef-
fort in interpretation. Fuzzy-rule-set-reduction techniques are
usually applied as a postprocessing stage once an initial fuzzy

Fig. 1. Tuning by changing the basic MF parameters and the variation
intervals.

rule set has been extracted. One of the most used fuzzy-rule-
set-reduction techniques is the rule selection. This approach in-
volves obtaining an optimal subset of fuzzy rules from a previous
fuzzy rule set by selecting some of them. We may find several
methods for rule selection, with different search algorithms that
look for the most successful combination of fuzzy rules [16],
[17], [43]. An interesting heuristic rule-selection procedure is
proposed in [51], where, by means of statistical measures, a
relevance factor is computed for each fuzzy rule in the FRBSs
to subsequently select the most relevant ones.

These kinds of techniques for rule selection could be easily
combined with other postprocessing techniques to obtain more
compact and accurate FRBSs. This way, some works have con-
sidered the selection of rules along with the tuning of MFs by
coding all of them (rules and parameters) in the same chromo-
some [13], [15], [33]–[35] within the same process and consid-
ering only performance criteria. Rules would be extracted only
if it is possible to either maintain or even improve the system’s
accuracy. A very interesting conclusion from some of these re-
cent works [15], [35] is that both techniques can present a pos-
itive synergy when they are combined within a well-designed
optimization process.

B. Tuning of Membership Functions

This approach, which is usually called DB tuning, involves
refining the MF shapes from a previous definition once the re-
maining FRBS components have been obtained [27], [36]–[39].
The classic way to refine the MFs is to change their definition
parameters. For example, if the following triangular-shaped MF
is considered:

µ(x) =




x−a
b−a , if a ≤ x < b
c−x
c−b , if b ≤ x ≤ c

0, otherwise

(1)

changing the basic parameters—a, b, and c—will vary the shape
of the fuzzy set that is associated with the MF, thus influencing
the FRBS performance (see Fig. 1). This is also true for other
shapes of MFs (trapezoidal, Gaussian, etc.).

Tuning involves fitting the characterization of the MFs asso-
ciated with the primary linguistic terms that are considered in
the system. Thus, the meaning of the linguistic terms is changed
from a previous definition (i.e., an initial DB that is composed of
the sematic concepts, and the corresponding MFs give meaning
to them). As said, in order to preserve the semantic integrity
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throughout the MF-optimization process [9], [31], [32], some
researchers have proposed several properties. Considering one
or more of these properties, several semantic constraints can
be applied in the design process in order to obtain a DB that
maintains the linguistic model integrity to the highest possible
level [22], [24], [25], [29], [36].

In this paper, in order to illustrate the performance of the
proposed approach, we use equidistributed strong fuzzy parti-
tions [52] to define an initial set of triangular MFs. These kinds
of fuzzy partitions, in which the sum of the membership degrees
within the variable domain are equal to 1.0 and the triangular
MFs are equidistant (therefore, symmetrical), perfectly meet
the required semantic constraints, and they are widely assumed
to have a high level of transparency. Anyhow, the initial DB
should be given by an expert, if possible, since the concepts and
their meaning strongly depend on the problem and the person
who makes the assessment. In order to maintain the semantic
integrity, we also consider some basic constraints by defining
convenient variation intervals for each MF parameter. For each
MFj = (aj , bj , cj ), where j = (1, . . . , m), and m is the number
of MFs in a given DB, the variation intervals are calculated as
follows (see Fig. 1):

[Il
aj

, Ir
aj

] = [aj − (bj − aj )/2, aj + (bj − aj )/2]

[Il
bj

, Ir
bj

] = [bj − (bj − aj )/2, bj + (cj − bj )/2]

[Il
cj

, Ir
cj

] = [cj − (cj − bj )/2, cj + (cj − bj )/2]. (2)

Due to these restrictions, it is possible to maintain the integrity
of MFs to a reasonable level. In any case, it would be very
interesting to have a measure for the quality of the tuned MFs.
We propose three metrics that try to preserve the original form
of the MFs, thus improving, if possible, the tradeoff between
accuracy and interpretability.

IV. SEMANTIC-BASED INTERPRETABILITY INDEX

In this section, we propose several metrics to measure the
interpretability when a tuning is performed on the DB. At this
point, we should remark that these metrics are based on the ex-
istence of the variation intervals (integrity constraints) that are
defined in the previous section and, therefore, on the assumption
that the initial DB comprises triangular MFs. Even though these
measures and index are proposed to work with triangular MFs,
they can be easily extended with some small changes in the
formulation of Gaussian or trapezoidal MFs. Since significant
changes in the DB can have a negative influence on interpretabil-
ity, each metric is proposed to control how good some desirable
aspects of the tuned MFs are with respect to the original ones
(relative, not absolute, metrics). The metrics proposed are the
following.

1) MFs displacement (δ): This metric measures the proxim-
ity of the central points of the MFs to the original ones.
The closer they are to the original points, the higher the
displacement.

2) MFs lateral amplitude rate (γ): This metric measures the
left/right rate differences of the tuned and the original

MFs. The closer the rates are, the higher the lateral ampli-
tude rate.

3) MFs area similarity (ρ): This metric measures the area
similarity of the tuned and the original MFs. It should be
higher if the tuned and the original areas are closer.

In the following sections, the three proposed metrics will be
explained in depth.

A. MFs Displacement Measure (δ)

This metric can control the displacements in the central point
of the MFs. It is based on computation of the normalized dis-
tance between the central points of the tuned MF and the original
MF, and is calculated by obtaining the maximum displacement
attained on all the MFs. For each MFj in the DB, we define
δj = |bj − b′j |/I , where I = (Ir

bj
− Il

bj
)/2 represents the max-

imum variation for each central parameter. Thus, δ∗ is defined
as δ∗ = maxj{δj}. The δ∗ metric takes values between 0 and
1; therefore, values near 1 show that the MFs present a great
displacement. The following transformation is made so that this
metric represents proximity (maximization):

Maximize δ = 1 − δ∗. (3)

This metric could also be used for either Gaussian or trapezoidal
MFs by considering the middle of the core as the position to
preserve.

B. MFs Lateral Amplitude Rate Measure (γ)

This metric can be used to control the shapes of the MFs. It
is based on relating the left and right parts of the support of the
original and the tuned MFs. Let us define left Sj = |aj − bj |
as the amplitude of the left part of the original MF support and
right Sj = |bj − cj | as the right-part amplitude. Let us define
left S ′

j = |a′
j − b′j | and right S ′

j = |b′j − c′j | as the correspond-
ing parts in the tuned MFs. The variable γj is calculated using
the following equation for each MF:

γj =
min{left Sj/right Sj , left S ′

j /right S ′
j}

max{left Sj/right Sj , left S ′
j /right S ′

j}
. (4)

Values near 1 mean that the left and right rates in the origi-
nal MFs are highly maintained in the tuned MFs. Finally, γ is
calculated by obtaining the minimum value of γj as

Maximize γ = minj{γj}. (5)

This metric always presents a value of 1 in the case of
Gaussian MFs. It could also be used for trapezoidal MFs by
considering the middle of the core as the central point, com-
puting γj with the core extremes, computing γj with the MF
extremes, and averaging both values.

C. MFs Area Similarity Measure (ρ)

This metric can be used to control the area of the shapes of
the MFs. It is based on relating the areas of the original and
the tuned MFs. Let us define Aj as the area of the triangle that
represents the original MFj and A′

j as the new area. The variable
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ρj is calculated using the following equation for each MF:

ρj =
min{Aj ,A

′
j}

max{Aj ,A′
j}

. (6)

Values near 1 mean that the original area and the tuned area
of the MFs are more similar (fewer changes). The ρ metric is
calculated by obtaining the minimum value of ρj

Maximize ρ = minj{ρj}. (7)

This metric is also applicable for trapezoidal and Gaussian
MFs.

D. Semantics-Based Interpretability Index Based
on Aggregation of the Three Measures: GM3M

We propose an aggregation of the metrics in a global index
based on the geometric mean. As mentioned, this index is called
GM3M and is defined as

Maximize GM3M = 3
√

δγρ. (8)

The value of GM3M ranges between 0 (which is the lowest
level of interpretability) and 1 (which is the highest level of inter-
pretability). The use of either minj{·} or maxj{·} to compute
the different metrics ensures the interpretability to a minimum
level in all the MFs, since our main aim is to measure the worst
case. Therefore, if there is a major problem in any of the MFs, it
can be detected and reflected in each particular metric. Similarly,
it is clear that if only one of the metrics has very low values,
a problem arises in the interpretability. The used aggregation
operator considers this fact. Moreover, all these relative metrics
present complementary properties to measure the relation with
the initial MFs.

V. MULTIOBJECTIVE EVOLUTIONARY ALGORITHM FOR RULE

SELECTION AND TUNING OF FUZZY

RULE-BASED SYSTEMS

Since it is not possible to either obtain the different
interpretability–accuracy tradeoff degrees or handle the synergy
of both approaches separately, the proposed algorithm performs
a fuzzy rule selection along with a tuning of the MFs in order
to improve the system’s accuracy as a first objective, the model
complexity as a second objective, and the GM3M index in order
to preserve the semantic interpretability as the third objective.
As mentioned, it is a specific MOEA that is called SPEA2 for
semantic interpretability, i.e., TSSP2-SI , which is based on the
well-known SPEA2 [44] algorithm. In the next section, the main
components of this algorithm are described, and then, the spe-
cific characteristics and its main steps are presented.

A. Objectives

Every chromosome is associated with a 3-D objective vector,
each element of which expresses the fulfillment degree of the
following three objectives:

1) semantic interpretability maximization: semantic-based
index, GM3M;

2) complexity minimization: number of selected rules, NR;

3) error minimization: mean-squared error divided by 2
(MSE/2).

The number of input variables is another complexity measure
that could be considered to improve the system’s interpretabil-
ity. However, we have not used this measure since this can be
considered in a previous stage, thus avoiding the use of a fourth
objective in the MOEAs, which, nowadays, are not able to work
properly with such quantity of objectives. The value of MSE/2
of an FRBS that is decoded from a given chromosome is defined
as follows: MSE/2 = (1/2)|D|

∑|D |
l=1(F (xl) − yl)2 , where |D|

is the dataset size, F (xl) is the output of the FRBS when the
lth example is an input, and yl is the known desired output.
The fuzzy inference system uses the center of gravity weighted
by the matching strategy as a defuzzification operator and the
minimum t-norm as implication and conjunctive operators.

B. Coding Scheme and Initial Gene Pool

A double coding scheme for both rule selection (CS ) and
tuning (CT ) is used: Cp = Cp

S Cp
T . In the Cp

S = (cS1 , . . . , cSm )
part, the coding scheme consists of binary-coded strings with
size m (where m is the number of initial rules). Depending on
whether a rule is selected or not, values of either “1” or “0”
are, respectively, assigned to the corresponding gene. In the CT
part, a real coding is used, with mi being the number of labels
of each of the n variables in the DB

Cp
T = C1C2 . . . Cn

Ci = (ai
1 , b

i
1 , c

i
1 , . . . , a

i
mi , bi

m i , ci
m i ), i = 1, . . . , n.

The initial population is obtained with all individuals having
all genes with value “1” in CS . In the CT part, the initial DB is
included as a first individual, and the remaining individuals are
generated at random within the corresponding variation intervals
that are defined in Section III-B.

C. Crossover and Mutation

In this section, we propose an intelligent crossover and a
mutation operator based on our experience in this problem.
This is able to adequately profit from the parents when both
rule selection and tuning are applied. The steps to obtain each
offspring are as follows.

1) Blend crossover (BLX)-0.5 [53] is applied to obtain the
CT part of the offspring.

2) Once the offspring CT part has been obtained, the binary
part CS is attained based on the CT parts (MFs) of parents
and offspring. For each gene in the CS part that represents
a concrete rule, the following hold.

a) The MFs involved in such rule are extracted from
the corresponding CT parts for each individual that
is involved in the crossover (offspring and parents
1 and 2). Thus, we can obtain the specific rules that
each of the three individuals represent.

b) Euclidean normalized distances are computed be-
tween the offspring rule and each parent rule by
considering the center points (vertex) of the MFs
that are composed of such rules. The differences
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between each pair of centers are normalized by the
amplitudes of their respective variation interval.

c) The parent with the rule closer to the one that is
obtained by the offspring is the one that determines
whether this rule is selected or not for the offspring
by directly copying its value in CS for the corre-
sponding gene.

This process is repeated until all the CS values are assigned
for the offspring. Four offspring are obtained by repeating this
process four times. (After considering mutation, only the two
most accurate values are taken as descendants.) By applying this
operator, exploration is performed in the CT part, and CS is di-
rectly obtained based on the previous knowledge that each parent
has about the fact whether a specific configuration of MFs can
be used for each rule. This avoids the possibility of recovering a
bad rule that was discarded for a concrete configuration of MFs,
while allowing the recovery of a good rule that is still considered
for this concrete configuration, thus increasing the probability
of success in either the selection or the elimination of a rule for
each concrete configuration of MFs. Since a better exploration
is performed for the CS part, the mutation operator does not
need to add rules. This way, once an offspring is generated, the
mutation operator changes a gene value at random in the CT part
and directly sets to zero a gene that is selected at random in the
CS part (one gene is modified in each part) with probability Pm .

By applying these operators, two problems are solved. First,
crossing individuals with very different rule configurations is
more productive. Second, this way of working favors rule ex-
traction since mutation is employed only to remove unnecessary
rules.

D. Main Characteristics of TSSP 2-SI

The proposed algorithm uses the SPEA2-selection mecha-
nism. However, in order to improve the algorithm’s ability to
search, the following changes are considered.

1) The proposed algorithm includes a mechanism for incest
prevention based on the concepts of CHC [45] in order to
avoid premature convergence in the CT part (real coding),
which is the main responsibility of accuracy improvements
and represents a more complicated search space than the
CS part (binary coding). In CHC, only those parents are
crossed whose Hamming distance divided by 4 is greater
than a threshold. Since we consider a real coding scheme
(i.e., only CT parts are considered), we have to trans-
form each gene using a gray code with a fixed number of
bits per gene (BGene), which are determined by the sys-
tem’s expert. This way, the threshold value is initialized
as L = (#CT × BGene)/4, where #CT is the number of
genes in the CT part of the chromosome. At each gener-
ation of the algorithm, the threshold value decreases by
1, which allows crossing closer solutions. This mecha-
nism can also be maintained because the parent selection
is multiobjective, which provides a parent diversity that is
similar to the original CHC.

2) The restarting operator forces the external population to
be empty and generates a new initial population. This ini-

tial population includes a copy of the individuals with the
best value in each objective (before removing them from
the external population). The remaining individuals in the
new population take the values of the most accurate indi-
vidual in the CS part and values generated at random in the
CT part. This preserves the most accurate and the most
interpretable solutions that are obtained. The restarting
operator is applied when we detect that all the crossovers
are allowed. However, in order to avoid premature conver-
gence, we apply the first restart if 50% of crossovers are de-
tected at any generation (the required ratio can be defined
as %required = 0.5). This condition is updated each time
restarting is performed as %required = (1+%required)/2.
Moreover, the most accurate solution should be improved
before each restart. To preserve a well-formed Pareto front,
the restart is not applied at the end. The number of eval-
uations without restart can be estimated as the number
of evaluations needed to apply the first restart multiplied
by 10. Additionally, restart is disabled if it was never ap-
plied before reaching the midpoint of the total number of
evaluations.

3) At each stage of the algorithm (between restarting points),
the number of solutions in the external population (P t+1)
that is considered to form the mating pool is progressively
reduced, by focusing only on those with the best accuracy.
To do this, the solutions are sorted from the best to the
worst (considering accuracy as criterion), and the number
of solutions that are considered for selection is reduced
progressively from 100% at the beginning to 50% at the
end of each stage. It is done by taking into account the
value of L. In the last evaluations when restart is disabled,
the mechanism to focus on the most accurate solutions
(which is the most difficult objective) is also disabled to
obtain a wide, well-formed Pareto front, from the most
accurate solutions to the most interpretable ones.

The main steps of TSSP2-SI are finally presented in Fig. 2
(see SPEA2 in [44]).

VI. EXPERIMENTAL STUDY

To evaluate the usefulness of the proposed approach, we used
nine real-world problems. Table I summarizes the main charac-
teristics of the nine datasets and shows the link to the knowledge
extraction based on evolutionary learning (KEEL) software tool
Web page (http://www.keel.es/) [55] from which these can be
downloaded. This section is organized as follows.

1) Section VI-A presents the experimental setup.
2) Section VI-B analyzes the tuning of MFs individually,

by paying attention to the GM3M index. To this end, the
tuning component of the proposed approach and its single-
objective counterpart are compared in terms of the most
accurate solutions. Some example DBs are also presented
in order to graphically show the effects of the use of the
GM3M index as an objective in the evolutionary model.

3) Section VI-C presents an analysis on the rule selection
individually. In order to better analyze the interaction be-
tween the different components of the proposed approach,
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Fig. 2. TSSP2-SI algorithm scheme.

the rule-selection component has also been compared with
its single-objective counterpart.

4) Section VI-D analyzes the proposed approach and the in-
teraction between the tuning and the rule-selection com-
ponents. This analysis has been carried out in the same
way, i.e., by considering only tuning and paying attention
to the effects that the concurrent use of both techniques
promotes to the different criteria, particularly to the GM3M

index.
5) Section VI-E includes a global statistical analysis of the

most accurate solutions by considering all the approaches
and the corresponding optimized measures/objectives.

6) Finally, Section VI-F shows a graphical and statistical
analysis of the obtained Pareto fronts. To perform this
study, we plot the centroids (average values) of three rep-
resentative points of the Pareto fronts (from the most accu-
rate to the most interpretable) on the accuracy–complexity
and accuracy–semantic planes. These plots provide a
glimpse of the trend of the Pareto fronts. We also present

TABLE I
DATASETS THAT ARE CONSIDERED FOR THE EXPERIMENTAL STUDY

a statistical analysis of the centroids of the most inter-
pretable and intermediate solutions. For completeness,
we also show some representative Pareto fronts that are
achieved by the different MOEAs.

A. Experimental Setup

In all the cases, the well-known ad hoc data-driven learning
algorithm of Wang and Mendel [54] is applied to obtain an initial
set of candidate linguistic rules. The initial linguistic partitions
comprise five linguistic terms in the case of datasets with less
than nine variables and three linguistic terms in the remaining
ones (which helps obtain a more reasonable NRs in the more
complex datasets). Once the initial RB is generated, the different
postprocessing algorithms can be applied. The methods that are
considered for the experiments are briefly described in Table II.
In order to evaluate the advantages of concurrently performing
rule selection and tuning for the optimization of the three objec-
tives simultaneously (TSSP2-SI), we also analyze the use of the
multiobjective approach in both rule selection and tuning sepa-
rately. In practice, we consider chromosomes that are composed
of only the CS part for the rule selection (SSP2) and the CT part
for the tuning of MFs (TSP2-SI). Further, their single-objective
accuracy-oriented counterparts are also considered in order to
analyze the influence of the interpretability criteria in the most
difficult one (accuracy).

Clearly, it would make no sense to consider either the GM3M

objective when no tuning is performed or the NR objective when
no rule selection is performed. It is assumed that the approaches
that perform only rule selection have the maximum semantic in-
terpretability and those that perform tuning have the worst NR.
Accordingly, the approaches that consider only rule selection
should be compared in the accuracy–complexity (MSE–NR)
plane, while the approaches that consider only tuning should
be compared in the accuracy–semantic (MSE–GM3M) plane. In
the case of the proposed method, i.e., TSSP2-SI , which uses the
three objectives, we project the solutions that are obtained in
both planes, accuracy–complexity and accuracy–semantic, sub-
sequently removing the dominated solutions that appear from
these projections. This way, the methods that perform rule selec-
tion and tuning concurrently can be compared with the methods
that perform only rule selection in the accuracy–complexity
plane and with those that perform only tuning in the accuracy–
semantic plane. Some researchers have also used these kinds of

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on June 18,2010 at 10:46:59 UTC from IEEE Xplore.  Restrictions apply. 



522 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 18, NO. 3, JUNE 2010

TABLE II
METHODS THAT ARE CONSIDERED FOR COMPARISON

WITH CLASSICAL TUNING

projections for graphical representation when three objectives
are optimized simultaneously [18].

In all the experiments, we adopted a fivefold cross-validation
model, i.e., we randomly split the dataset into five folds, each
containing 20% of the patterns of the dataset, and used four
folds for training and one for testing.1 For each of the possible
five different partitions (training/test), the algorithm was applied
six times, considering a different seed for the random-number
generator. Therefore, we consider the average results of 30 runs.
In the case of methods with a multiobjective approach, for each
dataset and for each trial, we generate the approximated Pareto
front in the corresponding objective planes. Then, we focus on
three representative points: the most interpretable (MAX INT),
the median (MEDIAN INT/ACC), and the most accurate in training
(MAX ACC) points. For each representative point, we compute
the mean values over the 30 trials of the MSEs on the training and
test sets (i.e., MSEtra

/2 and MSEtst
/2 ), the NR, and/or the GM3M

index, depending on the objective planes that are involved. For
the single-objective-based approaches, we compute the same
mean values over the 30 solutions that are obtained for each
dataset. These three points are representative positions on each
plane, i.e., accuracy–complexity or accuracy–semantic, and they
have been considered only to perform a statistical analysis on
the different planes. Besides, the final user could select the most
appropriate solution from the final Pareto front by also looking
for a tradeoff between NR and GM3M, depending on its own
preferences.

In order to assess whether significant differences exist among
the results, we adopt statistical analysis [47]–[50] and, in par-
ticular, nonparametric tests, according to the recommenda-
tions made in [47] and [48], where a set of simple, safe,
and robust nonparametric tests for statistical comparisons of
classifiers has been introduced. For pairwise comparison, we
use Wilcoxon’s signed-ranks test [56], [57], and for multiple
comparisons, we will employ different approaches, including
Friedman’s test [58], Iman and Davenport’s test [59], and
Holm’s method [60]. A detailed description of these tests is
presented in Appendix. To perform the tests, we use a level
of confidence α = 0.1. In particular, Wilcoxon’s test is based
on computing the differences between two sample means (typ-
ically, mean test errors that are obtained by a pair of different

1The corresponding data partitions (fivefold) for these datasets are available
at the KEEL project Web page [55]: http://sci2s.ugr.es/keel/datasets.php.

TABLE III
INITIAL RESULTS OBTAINED BY WM

algorithms on different datasets). In the classification frame-
work, these differences are well defined since these errors are in
the same domain. In our case, to have well-defined differences
in MSE/2 and NR (it is not necessary in the case of GM3M), we
propose to adopt a normalized difference DIFF, which is defined
as

DIFF =
Mean(Other) − Mean(Reference Algorithm)

Mean(Other)
(9)

where Mean(x) represents either the MSE/2 or the NR means
that are obtained by the x algorithm. This difference expresses
the improvement in percentage of the reference algorithm.

The average results of the initial FRBSs, along with their
standard deviations (reference results), which are obtained by
WM in the five folds, are shown in Table III. In the case of
the studied postprocessing algorithms, the values of the input
parameters that are considered by the single-objective methods
are as follows: population size of 61, 100 000 evaluations, 0.6
as crossover probability, and 0.2 as mutation probability per
chromosome. In the case of the MOEAs, these are the following:
population size of 200, external population size of 61, 100 000
evaluations, 0.2 as mutation probability, and 30 bits per gene for
the Gray codification.

B. Analysis on the Tuning of MFs and the Semantic-Based
Index: GM3M

This section analyzes the performance of the methods that
perform only tuning of the MFs. Table IV shows the re-
sults obtained by T and the results obtained by TSP2-SI
in the three representative points of the accuracy–semantic
plane, which are used further for a statistical analysis of the
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TABLE IV
RESULTS OBTAINED BY THE METHODS THAT PERFORM ONLY TUNING OF MFS

TABLE V
WILCOXON’S TEST: T (R+ ) VERSUS TSP2-SI (R−) ON GM3M AND MSEtst

/2
AT MAX ACC

multiobjective methods. In addition to the semantic-based in-
dex, i.e., GM3M, we show the mean values of the three
measures that comprise the index, δ, γ, and ρ. [In any
event, we should take into account that (

∑30
i=1 GM3Mi/30) �=

3

√
(
∑30

i=1 δi/30)(
∑30

i=1 γi/30)(
∑30

i=1 ρi/30).]
Table V shows the results of the Wilcoxon test on the test error

and the GM3M measures for T and TSP2-SI at MAX ACC. The
results show that TSP2-SI outperforms T on the test error and
GM3M. The null hypothesis that is associated with Wilcoxon’s
test is rejected (p < α) in both cases in favor of TSP2-SI due to
the differences between R+ and R−. This is due to the com-
plex search space that the parametric tuning of MFs involves.
The use of both objectives and the modified SPEA2 algorithm
helps improve the exploration/exploitation tradeoff to find more
optimal solutions.

Fig. 3 shows a representative example in ELE (same data
partition and seed) of a DB that is obtained with T and three
DBs that are obtained with TSP2-SI , with the first one with the
most interpretable solution, the second one with the median
solution, and the last one with the most accurate solution. The
DBs obtained are shown in black and the initial DB is shown
in gray. To ease graphic representation, the MFs are labeled
from “l1” to “l5.” Nevertheless, such MFs are associated with a
linguistic meaning that is determined by an expert. With these
examples, we show the expected correlation between the GM3M

index and the semantic interpretability of the obtained DBs. It is
quite interesting that the solution with the highest interpretability
obtains about a 37% improvement in test with respect to WM
and a value of GM3M near 1.

C. Analysis of the Rule Selection

In this section, we present a brief study on the methods that
perform only rule selection. Table VI shows the results that are
obtained by S and the results that are obtained by SSP2 in the
three representative points of the accuracy–complexity plane.

In order to assess whether we can conclude that SSP2 statis-
tically outperforms S in terms of test error and NR measure, we
apply Wilcoxon’s test to the results achieved by these algorithms
in the most accurate solutions. Table VII shows the results of
the application of Wilcoxon’s test on these measures. The null
hypothesis that is associated with the Wilcoxon’s test is now
accepted (p > α) in both cases. Thus, we can conclude that the
results achieved by S and SSP2 are statistically different neither
on the test error nor on the NR measure. In this case, the search
space is well handled by both approaches since equivalent re-
sults are obtained by considering the most accurate solutions
of the obtained Pareto fronts. In any event, SSP2 is able to ob-
tain a set of valid solutions with different accuracy–complexity
tradeoffs.

D. Analysis of the Interaction of the Tuning With Rule Selection

This section analyzes the results of the proposed method,
i.e., TSSP2-SI , which performs both rule selection and tuning
of the MFs simultaneously, with respect to its single-objective
counterpart, i.e., TS. As was explained in Section VI-A, we show
the three representative points in Table VIII in the accuracy–
semantic and the accuracy–complexity objective planes. This
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Fig. 3. DB obtained with T and three representative DBs obtained with TSP2-SI from one run in ELE.

TABLE VI
RESULTS OBTAINED BY THE METHODS THAT PERFORM ONLY RULE SELECTION

TABLE VII
WILCOXON’S TEST: S (R+ ) VERSUS SSP2 (R−) ON NR AND MSEtst

/2
AT MAX ACC

allows further comparisons with the approaches that perform
only rule selection and those that perform only tuning. In both
cases, the values at the point MAX ACC coincide. The results
of the single-objective counterpart algorithm, i.e., TS, are also
shown in this table.

This time, we can compare the results from TSSP2-SI and
TS on the three objective measures. Table IX shows the results
of Wilcoxon’s test for the most accurate point MAX ACC on
them. For each measure, TSSP2-SI clearly outperforms TS. The
null hypothesis for Wilcoxon’s test in all the cases has been
rejected in favor of TSSP2-SI , with a very small p-value, which
supports our conclusion with a high degree of confidence. It

seems logical that by including NR and GM3M in the multi-
objective approach, the interpretability should be better in the
obtained FRBSs. However, they are also better in the accuracy
objective. The use of the different measures to obtain a set of so-
lutions with different tradeoffs helps maintain a higher diversity
that promotes the derivation of more optimal solutions. There-
fore, from these results and the results in the previous sections,
we can conclude that in the approaches that consider tuning,
it is preferable to use a multiobjective approach, including the
proposed interpretability measures since we can obtain more
interpretable and more accurate FRBSs than those obtained by
the single-objective accuracy-oriented counterpart algorithms.

In Fig. 4, we represent some DBs that are obtained with
TS and TSSP2-SI in ELE and PLA. See Section VI-B for an
explanation of these kinds of figures. In both problems, it is
clear that at least the DB with the best accuracy from TSSP2-SI
is preferable to the one that is obtained by TS, but additional
highly transparent DBs are also shown in the case of TSSP2-SI .

E. Global Analysis on the Most Accurate Solutions: MAX ACC

Once the different approaches have been analyzed individ-
ually, all of them have to be compared to determine which of
them should be preferred. In order to also include the single-
objective-based algorithms, the global analysis is performed on
the most accurate solutions. Since we will compare more than
two algorithms, on this occasion, we use nonparametric tests for
multiple comparisons. In order to perform a multiple compari-
son, it is necessary to check whether any of the results obtained
by the algorithms present any inequality. In the case of finding
some, we can know, by using a post hoc test, which algorithms
partners’ average results are dissimilar. We will use the results
obtained in the evaluation of the three performance measures
that have been presented in the previous sections, and we will
define a control algorithm as the best performing algorithm
(which obtains the lowest value of ranking that is computed
through a Friedman test [58]). In order to test whether signifi-
cant differences exist among all the mean values, we use Iman
and Davenport’s test [59]. Finally, we use Holm’s [60] post hoc
test to compare the control algorithm with what remains.
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TABLE VIII
RESULTS OBTAINED BY THE METHODS THAT PERFORM BOTH RULE SELECTION AND TUNING OF MFS

Fig. 4. DB obtained with TS and three representative DBs obtained with TSSP2-SI from one run in ELE and PLA.

TABLE IX
WILCOXON’S TEST: TS (R+ ) VERSUS TSSP2-SI (R−) ON GM3M, NR AND

MSEtst
/2 AT MAX ACC

TABLE X
RANKINGS OBTAINED THROUGH FRIEDMAN’S TEST FOR THE METHODS THAT

PERFORM SELECTION ON MSEtst
/2 AND NR MEASURES
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TABLE XI
HOLM TABLE FOR THE METHODS THAT PERFORM SELECTION WITH α = 0.1 ON MSEtst

/2 AND NR MEASURES

TABLE XII
RANKINGS OBTAINED THROUGH FRIEDMAN’S TEST FOR THE METHODS THAT

PERFORM TUNING ON MSEtst
/2 AND GM3M MEASURES

As explained in Section VI-A, the approaches that consider
rule selection should be compared in the accuracy–complexity
plane, while the approaches that consider tuning should be com-
pared in the accuracy–semantic plane. For this reason, we per-
form two studies: the first one on the methods that perform rule
selection and the second one on the methods that perform tun-
ing. Obviously, TS and the proposed approach, i.e., TSSP2-SI ,
are included in both studies by using their projections (see
Section VI-A).

1) Analysis of the Methods That Perform Rule Selection—
Accuracy–Complexity Plane: Table X shows the rankings of
the different methods that are considered in this study. Iman–
Davenport’s test tells us that significant differences exist among
the results observed in all datasets, with p-values (3.990E−8)
and (8.214E−5) on MSEtst

/2 and NR, respectively. The best rank-
ing is obtained by TSSP2-SI in both measures: test error and NR.

We now apply Holm’s test to compare the best ranking method
in each case with the remaining methods. Table XI presents these
results, where, the algorithms are ordered with respect to the
obtained z-value. Holm’s test rejects the hypothesis of equality
with the rest of the methods in MSEtst

/2 (p < α/i). It also rejects
the hypothesis with TS and S in NR. From these results, we can
state that TSSP2-SI outperforms the remaining methods in both
accuracy and complexity, except in the case of SSP2 that should
be considered to be equivalent in terms of NR. However, we can
ensure that under these conditions, TSSP2-SI dominates SSP2 . It
is also interesting to note the ranking position that is obtained
by TS on NR. It shows that some unnecessary or inadequate
rules cannot be removed by the single-objective approach.

2) Analysis of the Methods That Perform Tuning—Accuracy–
Semantic Plane: In this study, Table XII shows the rankings
(through Friedman’s test) of the four algorithms considered. The
p-values computed using Iman–Davenport’s test [(8.171E−6)
and (6.956E−7)] imply that there are statistical differences
among the results on MSEtst

/2 and GM3M, respectively. TSSP2-SI
is better in ranking for both measures. In both cases, Holm’s test
(see Table XIII) rejects the null hypothesis with all the remain-
ing methods. The best method is again TSSP2-SI , which obtains
the best results for these two objectives. Finally, since the pro-

posed approach is the best in both planes, we can conclude that
this method is preferable to the remaining approaches to obtain
accurate and simple FRBSs, thus maintaining a good level of
semantic interpretability.

F. Graphical and Statistical Analysis of the Pareto Fronts

Since we perform 30 trials with different training and test
partitions, it would not be readable to show all the Pareto fronts.
Thus, to have a glimpse of the trends of the Pareto fronts in
the accuracy–complexity and the accuracy–semantic planes, we
plot the MAX INT, the MEDIAN (INT/ACC), and the MAX ACC

points for each MOEA and for each dataset in Fig. 5. We also
show the solutions that are generated by the single-objective
methods.

The analysis of Fig. 5 shows that the approximations of the
Pareto fronts that are achieved by TSSP2-SI are, in general, below
the approximations of the Pareto fronts that are obtained by the
other MOEAs. To compare in detail the different MOEAs with
respect to the MAX INT and MEDIAN (INT/ACC) points, we show
the results of the application of the Wilcoxon test on these points
in Table XIV for the MOEAs that perform rule selection, i.e.,
TSSP2-SI and SSP2 . We observe a behavior that is very similar
to the MAX ACC point, i.e., TSSP2-SI outperforms SSP2 in all
the cases, except for NR in the most interpretable point.

With regard to the MOEAs that perform tuning, we show
the results of the application of the Wilcoxon test for the same
points in Table XV. At the MEDIAN (INT/ACC) point, the null
hypothesis that is associated with the Wilcoxon test is rejected
(p < α) in GM3M, although the results achieved by TSSP2-SI
and TSP2-SI are statistically equivalent on MSEtst

/2 , which is the
same as that obtained with MAX INT, but the role between both
measures is changed. Under these conditions, we can state that
the solutions that are obtained by TSSP2-SI dominate, in general,
the ones that are obtained by TSP2-SI in practically all the parts
of the Pareto fronts.

In order to show the actual behavior of the approximated
Pareto fronts provided by each MOEA, we show some represen-
tative Pareto fronts (the results of a single trial) on two datasets
in Fig. 6. In this figure, we plot the solutions from TSSP2-SI in
a 3-D way, and we plot the projections of these solutions on
all the possible objective planes along with the corresponding
comparison methods. In order to retain all the information, the
dominated solutions that are obtained from the projections have
not been removed. The symbols and colors similar to those used
in Fig. 5 have been used in this case.
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TABLE XIII
HOLM TABLE FOR THE METHODS THAT PERFORM TUNING WITH α = 0.1 ON MSEtst

/2 AND GM3M MEASURES

Fig. 5. Averaged Pareto fronts that are obtained in all the problems.

TABLE XIV
WILCOXON’S TEST: SSP2 (R+ ) VERSUS TSSP2-SI (R−) ON NR AND MSEtst

/2 AT MEDIAN (INT/ACC) AND MAX INT

TABLE XV
WILCOXON’S TEST: TSP2-SI (R+ ) VERSUS TSSP2-SI (R−), GM3M AND MSEtst

/2 AT MEDIAN (INT/ACC) AND MAX INT
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Fig. 6. Example Pareto fronts that are obtained in ELE and MOR problems.

VII. CONCLUSION

In this paper, we have proposed an index that helps preserve
the semantic interpretability of linguistic fuzzy systems, namely,
GM3M. The GM3M index is devoted to preserving the original
shape of the MFs while a tuning of their definition parameters is
performed, and it represents a measure of the quality of the DB.
It works on the assumption that the initial DB comprises the
appropriate MFs with an associated linguistic meaning (which
is usually given by an expert). To this end, we have proposed
TSSP2-SI , which is an effective postprocessing MOEA that is de-
signed to generate a set of FRBSs with different tradeoffs among
accuracy, complexity, and semantic interpretability. Three cri-
teria have been considered: the MSE/2 , the NR, and the pro-
posed GM3M index. This method performs rule selection and
tuning of the MFs simultaneously on a given initial linguistic
FRBS.

We have shown that the use of the GM3M index within a mul-
tiobjective evolutionary framework helps the tuning approaches
obtain more interpretable and, at the same time, more accu-
rate models. Therefore, a multiobjective framework allows us
to obtain FRBSs that are characterized by better tradeoffs be-
tween accuracy, complexity, and semantic interpretability than
the ones that are provided by considering only accuracy as the
unique objective.

We should point out that the interaction of rule selection with
the tuning of MFs enables the derivation of much more accurate
models, while at the same time, the semantic interpretability
is maintained to a higher extent. Rule selection allows a ma-
jor reduction in the system’s complexity. Further, we observe
that TSSP2-SI outperforms all the analyzed methods in all the
datasets on the test error, and it achieves better values in GM3M

when performing a tuning of the MFs. This way, very interest-
ing solutions have also been obtained with improved accuracy

and very high levels of semantic interpretability (near the initial
model).

In this sense, this paper has proposed an index to measure
the interpretability that is associated with the fuzzy partition
along with an RB postprocessing method for obtaining a trade-
off between accuracy and interpretability in linguistic model-
ing. Working this way follows the final goal pursued by CW
by improving the granulation of a continuous variable, which
involves a partitioning of the whole into parts, while keeping the
meaning of the original words and decreasing the complexity of
the RB.

APPENDIX

ON THE USE OF NONPARAMETRIC TESTS BASED

ON RANKINGS

A nonparametric test uses either nominal data, ordinal data,
or data represented in an ordinal way of ranking. This does not
imply that only they can be used for these types of data. It could
be very interesting to transform the data from real values that
are contained within an interval to ranking-based data, which
is similar to the way a nonparametric test can be applied over
typical data of a parametric test when they do not fulfill the
necessary conditions that are imposed by the use of the test.
In the following, we explain the basic functionality of each
nonparametric test used in this study, along with the aim that is
pursued by its use.

1) Friedman’s test [58]: It is a nonparametric equivalent of the
test of repeated-measures analysis of variance (ANOVA).
It computes the ranking of the observed results for algo-
rithm (rj for the algorithm j with k algorithms) for each
dataset, assigning the ranking 1 to the best of them and the
ranking k to the worst. Under the null hypothesis, which is
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formed by assuming that the results of the algorithms are
equivalent (with similar rankings), Friedman’s statistic

X 2
F =

12Nds

k(k + 1)

[ ∑
j

R2
j −

k(k + 1)2

4

]
(10)

is distributed according to X 2
F with k − 1 degrees

of freedom (DOFs), where Rj = (1/Nds)
∑

i Rj
i , and

Nds is the number of datasets. The critical values for
Friedman’s statistic coincide with those established in the
X 2-distribution when Nds > 10 and k > 5. On the con-
trary, the exact values can be seen in [56] and [61].

2) Iman and Davenport’s test [59]: It is a metric that is de-
rived from Friedman’s statistic given that this last metric
produces a conservative undesirable effect. The statistic is

FF =
(Nds − 1)X 2

F

Nds(k − 1) −X 2
F

(11)

and it is distributed as an F-distribution with k − 1 and
(k − 1)(Nds − 1) DOFs.

3) Holm’s method [60]: This test sequentially checks the
hypothesis ordered according to their significance. We
will denote the p-values ordered by p1 , p2 , . . . in such
a way that p1 ≤ p2 ≤ · · · ≤ pk−1 . Holm’s method com-
pares each pi with α/(k − i), starting from the most sig-
nificant p-value. If p1 is less than α/(k − 1), the corre-
sponding hypothesis is rejected, and it allows the com-
parison of p2 with α/(k − 2). If the second hypothesis
is rejected, we continue with the process. As soon as a
certain hypothesis cannot be rejected, all the remaining
hypotheses are maintained as accepted. The statistic for
comparing the i algorithm with the j algorithm is

z =
(Ri − Rj )√

(k(k + 1))/6Nds

. (12)

The value of z is used to find the corresponding proba-
bility from the table of the normal distribution, which is
compared with the corresponding value of α.

4) Wilcoxon’s signed-rank test: The Wilcoxon signed-rank
test is a pairwise test with the aim of detecting significant
differences between two sample means: It is analogous to
the paired t-test in nonparametric statistical procedures. If
these means refer to the outputs of two algorithms, then the
test practically assesses the reciprocal behavior of the two
algorithms [56], [57]. Let di be the difference between the
performance scores of the two algorithms on the ith out
of Nds datasets. The differences are ranked according to
their absolute values; average ranks are assigned in case
of ties. Let R+ be the sum of ranks for the datasets on
which the first algorithm outperformed the second, and let
R− be the sum of ranks for the contrary outcome. Ranks
of di = 0 are split evenly among the sums; if there is an

odd number of them, one is ignored:

R+ =
∑
di >0

rank(di) +
1
2

∑
di =0

rank(di)

R− =
∑
di <0

rank(di) +
1
2

∑
di =0

rank(di). (13)

Let T be the smaller of the sums, i.e., T = min(R+ , R−).
If T is either less than or equal to the value of the distri-
bution of Wilcoxon for Nds DOFs (see [61, Tab. B.12]),
the null hypothesis of equality of means is rejected.
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